Sebelum lanjut membaca ada baiknya simak dulu penjelasan sebelumnya di sini. Untuk memahami cara kerja transistor kamu dapat membayangkan air mengalir melalui pipa dan mengalir dengan bebas sampai kita memblokirnya sebuah cakram.
Sekarang hubungkan pipa yang lebih kecil ke pipa utama dan menempatkan gerbang ayun di dalam pipa yang kecil ini. Kita bisa memindahkan cakram menggunakan katrol yang terhubung ke pintu ayun, dan ketika lebih jauh pintu ayun terbuka semakin banyak air yang dibiarkan mengalir di pipa utama. Gerbang ayun ternyata agak berat, jadi jika di pipa kecil mengalir sedikit air, tidak akan cukup untuk membukanya.
Jumlah air yang diperlukan untuk memaksa gerbang terbuka semakin banyak dan air yang mengalir di pipa kecil membuat katup terbuka lebih jauh dan memungkinkan semakin banyak air mengalir di pipa utama. Ini pada dasarnya dapat di analogikan bagaimana transistor npn bekerja. Jadi di rangkaian transistor npn ini kita berasumsi bahwa arus sedang mengalir dari baterai positif ke kolektor dan pin basis dan kemudian keluar dari pin emitor. Kita bisa saja selalu menggunakan petunjuk ini untuk mendesain sirkuit, namun sebenarnya bukan itu yang terjadi terjadi jika dilihat dari sisi aliran elektron.
Kenyataannya elektron mengalir dari negatif ke positif dari baterai, ini dibuktikan oleh joseph thompson yang melakukan beberapa percobaan saat melakukan penemuannya mengenai elektron dan juga membuktikan bahwa elektron mengalir di arah sebaliknya. Jadi pada kenyataannya elektron mengalir dari negatif ke dalam emitor dan kemudian keluar dari kolektor dan pin basis. Kita menyebutnya aliran elektron yang akan saya tempatkan ini berdampingan sehingga anda dapat melihat perbedaan kedua teori tersebut.
Ingat kita selalu mendesain sirkuit elektronik menggunakan metode arus konvensional. Akan tetapi para ilmuwan dan insinyur tahu bahwa aliran elektron adalah cara kerja sesungguhnya. Jadi kini kita tahu bahwa listrik adalah aliran elektron melalui kawat penghantar. Kawat tembaga adalah konduktor dan karet adalah isolator. Elektron dapat mengalir dengan mudah melalui tembaga tetapi mereka tidak dapat mengalir melalui isolator karet.
Jika kita melihat model dasar file atom dari konduktor logam, ini memiliki inti di tengah dan ini dikelilingi oleh sejumlah cangkang orbital yang menahan elektron. Di setiap cangkang memiliki jumlah elektron maksimum dan elektron harus memiliki jumlah energi tertentu untuk dapat diterima di setiap shell / cangkang. Elektron yang terletak paling jauh dari inti mengandung energi terbesar. Tangkapan energi paling banyak pada kulit terluar dikenal sebagai kulit valensi.
Sebuah konduktor memiliki antara satu sampai tiga elektron dalam valensinya. Kulit elektron ditahan oleh inti tetapi ada cangkang lain yang dikenal sebagai pita konduksi. Jika sebuah elektron bisa mencapai ini maka itu bisa membebaskan diri dari atom dan pindah ke atom lain. Dengan atom logam seperti tembaga, kulit valensi dan pita konduksi saling tumpang tindih dan sangat mudah elektron bergerak.
Dengan sebuah isolator kulit terluar jadi dikemas dan di sana sangat sedikit atau tidak ada ruang untuk elektron bergabung. Nukleus mengikat dengan erat si elektron dan pita konduksi terlalu jauh, jadi elektron tidak bisa mencapai ini atau melarikan diri. Karena itu listrik tidak dapat mengalir melalui bahan isolator ini.
Namun ada material lain yang disebut sebagai semikonduktor, dan silikon adalah contoh semikonduktor dengan sifat materi ini. Ada terlalu banyak elektron di kulit valensi agar menjadi sebuah konduktor. Jadi ini bertindak sebagai isolator tetapi karena pita konduksi cukup dekat dan jika kita memberikan beberapa energi eksternal elektron akan mendapatkan energi yang cukup untuk melakukan lompatan ke konduksi band dan menjadi bebas.
Oleh karena itu materi ini dapat berfungsi sebagai keduanya sebuah isolator dan konduktor. Silikon murni memiliki hampir tidak ada elektron bebas, jadi yang dilakukan para insinyur adalah menyuntikkan silikon dengan sedikit bahan lain yang mengubah sifat listriknya dan kita menyebutnya doping tipe-p dan tipe-n, yang kita gabungkan untuk membentuk sambungan PN.
Kita bisa menyatukannya untuk membentuk sebuah npn atau transistor pnp di dalam sebuah transistor. Kini kita memiliki pin kolektor dan emitor diantaranya. Dalam transistor npn kita memiliki dua lapis material tipe-n dan satu lapisan tipe-p, dan kabel basis terhubung ke lapisan tipe-p. Dalam transistor pnp ini cukup dikonfigurasi kebalikan dari semuanya dan tertutup resin untuk melindungi bahan internal.
Mari bayangkan silikonnya belum diolah jadi dapat disebut silikon murni. Di dalam setiap atom silikon dikelilingi dengan empat atom silikon lain. Yang diinginkan masing-masing atom adalah delapan elektron di kulit valensinya, tetapi atom silikon hanya memiliki empat elektron di dalamn kulit valensinya. Jadi mereka secara diam-diam berbagi elektron dengan atom tetangga mereka untuk mendapatkan yang mereka inginkan.
Ini diketahui sebagai ikatan kovalen ketika kita menambahkan material tipe-n seperti fosfor itu akan mengambil posisi dari beberapa buah atom silikon yang dimiliki. Atom fosfor memiliki lima elektron dalam cangkang valensinya. Seperti halnya atom silikon berbagi elektron untuk mendapatkan delapan yang mereka inginkan, mereka tidak butuh yang ekstra ini yang berarti sekarang ada elektron ekstra dalam materi dan ini bebas untuk dibawa-bawa.
Untuk membuat doping tipe-p kita menambahkan bahan seperti aluminium. Atom aluminium ini hanya memiliki tiga elektron di kulit valensinya karena itu tidak dapat menyediakan elektron untuk dibagikan, jadi salah satu dari mereka harus pergi. Ini berarti lubang telah dibuat di mana elektron bisa duduk dan menempati, dan sekarang kita memiliki dua buah silikon yang satu diolah dengan terlalu banyak elektron (lubang hijau pada gambar) dan satu dengan tidak cukup elektron (lubang hitam pada gambar).
Kedua bahan tersebut bergabung membentuk sebuah persimpangan/junction PN. Di persimpangan ini kita mendapatkan apa yang dikenal sebagai daerah penipisan / depletion. Di wilayah ini beberapa kelebihan elektron dari sisi n akan pindah untuk menempati lubang di p. Lokasi migrasi ini akan membentuk penghalang. Dengan penumpukan elektron dan lubang, seberang sisi elektron bermuatan negatif dan lubang dipertimbangkan bermuatan positif. Jadi penumpukan ini menyebabkan ada sedikit wilayah bermuatan negatif dan ada wilayah yang sedikit bermuatan positif. Ini menciptakan medan listrik dan mencegah lebih banyak elektron bergerak menyeberang.
Perbedaan potensial dalam wilayah ini biasanya sekitar 0,7 volt. Saat kita menghubungkan sebuah sumber tegangan melintasi kedua ujungnya dengan positif terhubung ke material tipe-p, ini akan menciptakan bias maju dan elektron akan mulai mengalir. Sumber tegangan harus lebih besar dari penghalang 0,7 volt. Jika tidak, elektron tidak dapat melakukan lompatan.
Ketika kita membalikkan catu daya sehingga yang positif terhubung ke material tipe-n, elektron ditahan di penghalang dan akan ditarik kembali ke arah positif terminal dan lubang akan ditarik kembali menuju terminal negatif. Ini telah menyebabkan bias terbalik.
Transistor npn memiliki dua lapisan bahan tipe n, jadi kita memiliki dua persimpangan dan karenanya dua penghalang, jadi tidak ada arus yang dapat mengalir melaluinya. Biasanya bahan tipe-n emitor sangat dikotori jadi ada banyak elektron berlebih sini. Tipe-p pada basis dikotori dengan ringan dan ada beberapa lubang di sini. Kolektor tipe-n dikotori sedang, jadi ada beberapa elektron berlebih di sini.
Jika kita menghubungkan baterai di antara basis dan emitor dengan positif terhubung ke lapisan tipe-p. ini akan menciptakan bias maju sehingga menyebabkan penghalang jatuh selama voltase minimal 0,7 volt. Sehingga penghalang berkurang dan elektron menyerbu untuk mengisi ruang di dalam bahan tipe-p. Beberapa dari elektron ini akan menempati lubang dan mereka akan ditarik ke arah terminal positif baterai.
Lapisan tipe-p ini tipis dan sengaja dikotori, sehingga peluang elektron jatuh ke dalam lubang rendah. Sisanya akan tetap bebas bergerak bahan oleh karena itu hanya arus kecil yang akan mengalir keluar dari pin basis dan meninggalkan kelebihan elektron yang sekarang berbahan tipe-p.
Jika kita kemudian menghubungkan baterai lain antara emitor dan kolektor dengan positif terhubung ke kolektor, elektron bermuatan negatif di dalam kolektor akan ditarik ke terminal positif yang menyebabkan reverse bias. Jika mengingat reverse bias, elektron dan lubang penghalang ditarik kembali menyeberang sehingga elektron di sisi penghalang tipe-p ditarik ke sisi tipe-n dan lubang di sisi tipe-n adalah ditarik kembali ke sisi tipe-p.
Sudah ada jumlah elektron berlebih dalam bahan tipe-p jadi mereka akan bergerak untuk menempati lubang tersebut dan beberapa di antaranya akan ditarik karena tegangan baterai ini lebih besar jadi daya tariknya jauh lebih tinggi. Elektron-elektron ini ditarik melintasi mereka mengalir ke baterai jadi arus berkembang melintasi bias terbalik.
Persimpangan jalan tegangan yang lebih tinggi pada pin basis sepenuhnya membuka transistor yang berarti lebih banyak lagi elektron bergerak ke lapisan tipe-p. Oleh karena itu lebih banyak elektron yang ditarik melintasi bias terbalik. Kita juga melihat lebih banyak elektron mengalir masuk sisi emitor transistor dibandingkan dengan sisi kolektor.
Demikian penjelasan tentang teori transistor kali ini dan terus belajar tentang elektronika dasar.
Courtesy of : engineeringmindset.com
0 komentar:
Posting Komentar