Semua Tentang Belajar Teknologi Digital Dalam Kehidupan Sehari - Hari

Senin, 15 Juli 2024

[raspi - yolo] Pendeteksi Orang Pada CCTV Menggunakan Raspi-Yolov5

 


Wah ternyata yolov5 sangat cocok digunakan pada raspberry pi 3 (baca disini dulu), jadi semangat nihh berbagi kegembiraan bersama pembaca. Jadi seperti yang dulu saat saya belajar yolo v3, ujungnya adalah deteksi orang pada cctv yang bisa dibaca disini. Langsung aja kita akan buat script untuk mengetestnya melalui cctv yang ada di kota malang yang lebih ringan daripada di jogja, alamat untuk memilih titiknya di: http://cctv.malangkota.go.id/




Dan script gabungan dari beberapa tulisan sebelumnya saya bagikan seperti berikut :


import sys
import time
import json
import torch
import cv2
import os
import contextlib
from pathlib import Path

os.environ['QT_QPA_PLATFORM_PLUGIN_PATH'] = '/usr/lib/x86_64-linux-gnu/qt5/plugins'


def draw_boxes(frame, results):
    # Get the bounding boxes, labels, and confidence scores
    bboxes = results.xyxyn[0][:, :-1].numpy()
    labels = results.xyxyn[0][:, -1].numpy()
    confidences = results.xyxyn[0][:, -2].numpy()

    # Define the COCO class label for 'person'
    PERSON_LABEL = 0

    # Draw boxes for persons only
    for bbox, label, confidence in zip(bboxes, labels, confidences):
        if label == PERSON_LABEL:
            x1, y1, x2, y2 = bbox[:4]
            x1 = int(x1 * frame.shape[1])
            y1 = int(y1 * frame.shape[0])
            x2 = int(x2 * frame.shape[1])
            y2 = int(y2 * frame.shape[0])
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(frame, f'Orang {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (200, 255, 0), 2)


def main(stream_source):
    start_time = time.time()
    # Load YOLOv5 model
    model = torch.hub.load('ultralytics/yolov5', 'yolov5s', pretrained=True)

    # Open the video stream
    cap = cv2.VideoCapture(stream_source)
    if not cap.isOpened():
        print(f"Error: Could not open video stream {stream_source}")
        return

   # start_time = time.time()
    ret, frame = cap.read()
    if not ret:
        print("Error: Could not read frame")
        cap.release()
        return

    # Perform inference
    results = model(frame)

    # Extract bounding boxes and labels
    labels = results.xyxyn[0][:, -1].numpy()
    n_persons = sum(1 for label in labels if label == 0)  # label '0' typically corresponds to 'person' in COCO dataset

    # Calculate processing time
    processing_time = time.time() - start_time

    # Output results as JSON
    output = {
        "orang": n_persons,
        "time": round(processing_time, 2)
    }
    print(json.dumps(output))

    # Save the frame with bounding boxes as JPEG
   
    draw_boxes(frame, results)
    output_image_path = "/home/lampuku/yolov5/output.jpg"
    #results.render()  # This function draws bounding boxes on the frame
    cv2.imwrite(output_image_path, frame)

    cap.release()

if __name__ == "__main__":
    if len(sys.argv) != 2:
        print("Usage: python single_detect.py <stream_source>")
    else:
        stream_source = sys.argv[1]
        main(stream_source)

Hasilnya seperti berikut :



Waktu processing memang terlihat lama 23 detik, namun ini adalah waktu yg menunjukkan proses awal fusing layer dari yolov5. Namun jika melakukan deteksi selanjutnya cukup cepat ketika saya mencoba loop detect seperti berikut ini :




Wow dibawah 5 detik, cukup cepat deteksinya lhooo...Kalau ada yg berminat bisa menggabungkannya dengan node-red untuk membuat webui seperti gambar paling atas.




Share:

0 komentar:

Posting Komentar

Kontak Penulis



12179018.png (60×60)
+628155737755

Mail : ahocool@gmail.com

Site View

Categories

555 (8) 7 segmen (3) adc (4) amplifier (2) analog (19) android (14) antares (11) arduino (27) artikel (11) attiny (3) attiny2313 (19) audio (5) baterai (5) blog (1) bluetooth (1) chatgpt (2) cmos (2) crypto (2) dasar (46) digital (11) dimmer (5) display (3) esp8266 (26) euro2020 (13) gcc (1) gsm (1) iklan (1) infrared (2) Input Output (3) iot (75) jam (7) jualan (12) kereta api (1) keyboard (1) keypad (3) kios pulsa (2) kit (6) komponen (17) komputer (3) komunikasi (1) kontrol (8) lain-lain (8) lcd (2) led (14) led matrix (6) line tracer (1) lm35 (1) lora (11) lorawan (2) MATV (1) memory (1) metal detector (4) microcontroller (70) micropython (6) mikrokontroler (2) mikrokontroller (14) mikrotik (5) modbus (9) mqtt (3) ninmedia (5) ntp (1) paket belajar (19) palang pintu otomatis (1) parabola (88) pcb (2) power (1) praktek (2) project (33) proyek (1) python (8) radio (28) raspberry pi (9) remote (1) revisi (1) rfid (1) robot (1) rpm (2) rs232 (1) script break down (3) sdcard (3) sensor (2) sharing (3) signage (1) sinyal (1) sms (6) software (18) solar (1) solusi (1) tachometer (2) technology (1) teknologi (2) telegram (2) telepon (9) televisi (167) television (28) telkomiot (5) transistor (2) troubleshoot (3) tulisan (94) tutorial (108) tv digital (6) tvri (2) vu meter (2) vumeter (2) wav player (3) wayang (1) wifi (3) yolo (7)

Arsip Blog

Diskusi


kaskus
Forum Hobby Elektronika